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Pair contact process in two dimensions
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We study the stationary properties of the two-dimensional pair contact process, a nonequilibrium lattice
model exhibiting a phase transition to an absorbing state with an infinite number of configurations. The critical
probability and static critical exponents are determined via Monte Carlo simulations, as well as order-
parameter moment ratios and the scaling of the initial density decay. The static critical properties fall in the
directed percolation universality class.@S1063-651X~99!11310-2#

PACS number~s!: 05.50.1q, 02.50.2r, 05.70.Ln
io
i

cs
w

d
o

lu
er

ar

f

d

P
he

n-
n

on

in

o

u

ed
t

t of
m-

of
wo
im-

ro-
y’’

be-
nd

up-
the

par-

pt

o-

n
tial
d

ran-

we
of

e.

in
ess.
e a

As
w
s:
I. INTRODUCTION

Critical phenomena at absorbing-state phase transit
~i.e., between an active state and one in which the dynam
is frozen!, are of longstanding interest in statistical physi
and have enjoyed renewed attention due to connections
epidemics@1#, catalytic kinetics@2,3#, surface growth@4#,
self-organized criticality@5–8#, and issues of scaling an
universality @9,10#. In these systems, conflict between tw
opposing processes~e.g., creation and annihilation!, typically
leads to a continuous transition at a critical parameter va
Such transitions are known to fall generically in the univ
sality class of directed percolation~DP! @11–13#, although
the critical behavior is modified in the presence of local p
ity conservation@14–17#.

Another interesting case~without a conservation law! ap-
pears when the dynamics can become trapped in one o
infinite number~in the thermodynamic limit! of absorbing
configurations~INAC!. Systems of this sort were introduce
in catalysis modeling@18–20#; their critical properties have
been studied in detail by various researchers@21–28#. In one
dimension, the pair contact process~PCP! @22#, and other
models with INAC exhibit static critical behavior in the D
class@23,29#, but the critical exponents associated with t
spread of activity from a localized seed arenonuniversal,
varying continuously with the particle density in the enviro
ment@23,28#, and follow a generalized hyperscaling relatio
@24,30#. The anomalous spreading can be traced to a l
memory in the dynamics of the order parameter,r, arising
from coupling to an auxiliary field that remains frozen
regions wherer50 @25,27,28#. A field theory @i.e., a sto-
chastic partial differential equation forr(x,t)], incorporating
this memory term reproduces the nonuniversal exponents
served in simulations@31#.

In two dimensions the situation is much less clear. Sim
lation results for a microscopic model with INAC@26# con-
flict with studies of models exhibiting the aforemention
long memory@27,28#. ~In particular, it seems possible tha
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for one range of densities the spreading dynamics is tha
dynamic percolation, while for another range there is co
pact growth, perhaps with nonuniversal exponents@27#, or
without well defined scaling behavior@28#.! In hopes clari-
fying the nature of critical spreading in the presence
INAC, we propose to study the pair contact process in t
dimensions. Our interest in the PCP is motivated by its s
plicity, compared with the model studied in Ref.@26#. The
present work is devoted to static critical behavior, and p
vides the critical parameter value and the ‘‘natural densit
in the absorbing state~defined below! needed for a detailed
study of spreading. These results confirm that the static
havior falls in the DP class; analyses of moment ratios a
the initial decay of the order parameter provide further s
port. The balance of this paper is devoted to defining
model and simulation algorithm~Sec. II!, simulation results
~Sec. III!, and a brief summary~Sec. IV!.

II. MODEL

The pair contact process~PCP! is an interacting particle
system: a Markov process whose state space is a set of
ticle configurations on a lattice@32,33#. Each nearest-
neighbor pair of particles has a ratep of mutual annihilation,
and a rate 12p of attempted creation. In a creation attem
on the square lattice, a new particle may appear~with equal
likelihood! at any of the six sites neighboring the pair, pr
vided the chosen site is vacant.~Attempts to place a new
particle at an occupied site fail.! The PCP exhibits an active
phase forp,pc ; above this value the system falls into a
absorbing configuration that typically contains a substan
density,f, of particles.~Any arrangement of particles devoi
of nearest-neighbor pairs is absorbing.!

In our simulations, we maintain a list of theNp current
nearest-neighbor pairs. At each step we choose a pair at
dom from the list, and a process~annihilation with probabil-
ity p, creation with probability 12p). In case of annihila-
tion, the two particles are simply removed. For creation,
choose a sitex at random from among the six neighbors
the pair, and place a new particle there ifx is currently va-
cant. ~If x is occupied the configuration remains the sam!
The time increment associated with this step isDt51/Np ,
corresponding to one transition per pair per unit time,
agreement with the transition rates that define the proc
Following each change we update the list of pairs. We us

-
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square lattice ofL3L sites, with periodic boundaries; in th
studies reported here, all sites are initially occupied.

III. CRITICAL PROPERTIES

To locate the critical pointpc we study the size-
dependence of the~quasi! stationary pair densityr, i.e., the
fraction of nearest neighbors harboring a pair of particles
surviving trials, following a transient period during whic
r(t) relaxes from its initial value of unity.r is the order
parameter for the PCP, and as such we expect that a
critical point,

r~pc ,L !;L2b/n', ~1!

while off-critical values ofp should yield deviations from the
power law. We studied the pair density in systems of s
L510, 20, 40, 80, and 160, for timestm ranging from 103

for L510 to 53104 for L5160, with sample sizes rangin
from 106 trials (L510) to 104 trials (L5160). The results
~see Fig. 1! show r(p,L) following a power law for p
50.2005, but clearly not forp50.200 or 0.201. These dat
permit us to conclude thatpc50.2005(2), thefigure in pa-
rentheses denoting the uncertainty.

In order to sharpen our estimate forpc , we studied the
initial decay of the pair density. We expect the order para
eter to decay as a power law,r;t2d in a critical system at
short times ~i.e., t,t;Ln uu /n', for which the correlation
length j,L). For off-critical values, we anticipate devia
tions from a power law whenj(t) saturates at its stationar
value (,L), as r(t) approaches a nonzero quasistation
density~in the active phase,p,pc), or decays exponentially
for p.pc . In Fig. 2 we showr(t) for p50.2005, for three
different system sizes,L5160, 320, and 640, and observ
the expected data collapse at short times. Next we stu
values very close to 0.2005 in a system withL5640, and
evaluated the local slopes of graphs of the sort shown in
2. @The local slope is obtained from a least-squares linea
to lnr versus lnt, using sequences of 25 equally spaced po
(D lnt50.1) to gived(ta), ta being the geometric mean o
the times represented by the data points.# We plot the local
slopes versust21/2 in Fig. 3, and observe thatpc is clearly
greater than 0.200 48, and less than 0.200 55. The curve

FIG. 1. Stationary pair density vs system size forp50.21,
0.202, 0.201, 0.2005, 0.200, and 0.195~left to right!.
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p50.200 50 appears to be slightly supercritical, and that
0.200 52 a bit subcritical, leading to the estimatepc
50.200 51(1). Thecorresponding estimate ford ~taking into
account the uncertainty inpc) is 0.446~6!, consistent with
recent estimates ofd for DP in 211 dimensions, which range
from 0.4505~10! @34# to 0.452~1! @35#.

To estimate the exponent ratiob/n' we perform a least-
squares linear fit to the data shown in Fig. 1; The data
p50.2005 yield the exponent ratiob/n'50.793(5), where
the uncertainty represents one standard deviation.
quoted uncertainty, however, does not include the con
quences of our uncertainty inpc itself. In order to see how
this would affect our estimate, we ran further studies of
stationary state forp50.200 45, 0.200 52, and 0.200 55, an
found that the apparent value ofb/n' follows a roughly
linear trend for this range of values. Our final result, inclu
ing both intrinsic uncertainties~for a givenp) and our error
estimate forpc , is b/n'50.792(14), in good agreemen
with the value of 0.799~2! for DP in 211 dimensions@35#.

We also determined the survival probability,P(t,p,L),
i.e., the probability that the system contains at least o
nearest-neighbor pair. For finiteL, this decays asymptotically
asP;e2t/tP, with the lifetime showing a power-law depen
dence on the system size at the critical point

tP~pc ,L !;Ln uu /n'. ~2!

FIG. 2. Decay of the order parameter,p50.2005.1, L5160;
d, L5320; line,L5640.

FIG. 3. Local slope associated with the decay of the order
rameter, L5640. From top to bottom:p50.2004, 0.200 45,
0.200 48, 0.2005, 0.200 52, 0.200 55, and 0.2006.
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The data forp50.2005 are shown in Fig. 4. Following th
same procedure as used above forb/n' , we obtainn uu /n'

51.78(3). This is again consistent with the DP valu
1.766~2!. We find thatr and the particle densityf also ap-
proach their stationary values exponentially:r(t)2rs
;e2t/t ~similarly for f), but on a much shorter time sca
than that ofP(t): t.tP/10. Analysis of the data fort yields
n uu /n'51.69(5). ~We note that our data fort are of much
poorer quality than fortP , and so should not be interprete
as indicating non-DP scaling.!

For p<pc the process always falls into the absorbi
state. The properties of this state are determined by the p
ability distribution ~induced by the dynamics! on the set of
absorbing configurations for system sizeL. Of interest is the
particle densityf in the absorbing state, in particular, th
‘‘natural’’ density, defined as the limiting value at the critic
point:

fnat[ lim
L→`

f~pc ,L !. ~3!

~In one dimension, it is only for this particle density that t
spreading exponents take DP values@23#.! In our simulations
at pc virtually all of the trials end in an absorbing configu
ration beforetm ; the final particle density in the absorbin

FIG. 4. Relaxation times vs system size at the critical po
Upper set:tP , the mean lifetime; lower set:t, associated with the
relaxation ofr andf.

FIG. 5. Particle density in absorbing configurations at the cr
cal point vsL2b/n'. The inset is a plot off20.6776r.
b-

state yields an estimate forf(pc ,L).
Since the dynamics off is tied to that of the order pa

rameter, r, and since the excess particle density (f(p)
2fnat) in a related one-dimensional model is known to
governed by the order-parameter exponentb @23#, we expect
that the leading finite-size correction to the particle density
be;L2b/n', just as forr. This is confirmed in Fig. 5. Linear
fits to the data forL>40 yield f.0.14801aL2b/n' andr
.bL2b/n', ~with a50.9662 andb51.426), suggesting tha
the linear combinationf2(a/b)r will be essentially inde-
pendent ofL. This is indeed so forL>20, as shown in the
inset of Fig. 5, from which we obtain our final estimate,f
50.1477(1).

Order parameter moment ratios provide another tool
assigning a model a universality class; in equilibrium sp
systems Binder’s reduced fourth cumulant has been wid
used for this purpose@36#. A variety of ratios, involving both
odd and even moments, have been determined for sev
one dimensional models with absorbing-state transitions~in-
cluding the PCP!, as well as for the two-dimensional conta
process@29#. We determined the stationary order-parame
momentsm1 , . . . ,m4 (mj[^r j&) in order to evaluate vari-
ous ratios; the results are listed in Table I. In Fig. 6 we p
several of the moment ratios versusL21; linear fits yield the
infinite-L estimates given in Table I. The latter agree qu
well with the results for the contact process, providing fu
ther support for the PCP belonging to the DP universa
class. Curiously, the moment ratios for the PCP appea
approach their limiting values monotonically~with L), while
the two-dimensional CP exhibits a nonmonotonicL depen-
dence~see Fig. 5 of Ref.@29#!.

TABLE I. Ratios of order-parameter moments in the critic
PCP. Entries forL5` represent linear extrapolations; data for t
CP from Ref.@29#. Numbers in parentheses denote uncertainties
the last figure.

L m2 /m1
2 m3 /m1

3 m3 /(m1m2) m4 /m2
2

20 1.362~3! 2.300~6! 1.638~5! 2.247~10!

40 1.343~3! 2.147~7! 1.599~5! 2.159~9!

80 1.334~3! 2.111~9! 1.582~6! 2.116~10!

160 1.327~4! 2.086~9! 1.571~8! 2.093~13!

` 1.323~3! 2.067~9! 1.56~1! 2.07~1!

CP 1.326~1! 2.080~1! 1.569~1! 2.093~8!

.

- FIG. 6. Order-parameter moment ratios in the critical PCP. U
per set,m4 /m2

2; middle set,m3 /(m1m2); lower set,m2 /m1
2.
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IV. SUMMARY

We studied the stationary critical properties of the p
contact process in two dimensions. On the basis of the ex
nent ratiosb/n' andn uu /n' , moment ratios, and the initia
decay of the order parameter, we can assign the PCP to
directed percolation universality class, generic for absorbi
state transitions without a conservation law or special sy
s.
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metry. Our best estimate for the critical parameter ispc
50.200 51(1). Theissue of spreading dynamics will be ad
dressed in future work.
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