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Pair contact process in two dimensions
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We study the stationary properties of the two-dimensional pair contact process, a nonequilibrium lattice
model exhibiting a phase transition to an absorbing state with an infinite number of configurations. The critical
probability and static critical exponents are determined via Monte Carlo simulations, as well as order-
parameter moment ratios and the scaling of the initial density decay. The static critical properties fall in the
directed percolation universality clag§1063-651X%99)11310-3

PACS numbegps): 05.50+q, 02.50-r, 05.70.Ln

[. INTRODUCTION for one range of densities the spreading dynamics is that of
dynamic percolation, while for another range there is com-
Critical phenomena at absorbing-state phase transitiongact growth, perhaps with nonuniversal expond|, or
(i.e., between an active state and one in which the dynamicgithout well defined scaling behavi¢28].) In hopes clari-
is frozen, are of longstanding interest in statistical physics,fying the nature of critical spreading in the presence of
and have enjoyed renewed attention due to connections wittNAC, we propose to study the pair contact process in two
epidemics[1], catalytic kinetics[2,3], surface growth4], dimensions. Our interest in the PCP is motivated by its sim-
self-organized criticality{5—8], and issues of scaling and plicity, compared with the model studied in R¢26]. The
universality[9,10]. In these systems, conflict between two present work is devoted to static critical behavior, and pro-
opposing processés.g., creation and annihilatiprtypically ~ vides the critical parameter value and the “natural density”
leads to a continuous transition at a critical parameter valudn the absorbing statelefined below needed for a detailed
Such transitions are known to fall generically in the univer-study of spreading. These results confirm that the static be-
sality class of directed percolatiaidP) [11-13, although  havior falls in the DP class; analyses of moment ratios and
the critical behavior is modified in the presence of local parthe initial decay of the order parameter provide further sup-
ity conservatior[14—17. port. The balance of this paper is devoted to defining the
Another interesting cas@vithout a conservation lawap- ~ model and simulation algorithitSec. 1), simulation results
pears when the dynamics can become trapped in one of d®ec. Il), and a brief summarySec. IV).
infinite number(in the thermodynamic limjtof absorbing

configurationgINAC). Systems of this sort were introduced Il. MODEL
in catalysis modeling18—20; their critical properties have
been studied in detail by various researctids-28. In one The pair contact proceg®CP is aninteracting particle

dimension, the pair contact proceCP [22], and other systema Markov process whose state space is a set of par-
models with INAC exhibit static critical behavior in the DP ticle configurations on a latticd32,33. Each nearest-
class[23,29, but the critical exponents associated with theneighbor pair of particles has a rggef mutual annihilation,
spread of activity from a localized seed amenuniversal and a rate * p of attempted creation. In a creation attempt
varying continuously with the particle density in the environ- on the square lattice, a new particle may appeath equal
ment[23,28, and follow a generalized hyperscaling relation likelihood) at any of the six sites neighboring the pair, pro-
[24,30. The anomalous spreading can be traced to a longided the chosen site is vacarnttempts to place a new
memory in the dynamics of the order paramejerarising  particle at an occupied site fgilThe PCP exhibits an active
from coupling to an auxiliary field that remains frozen in phase forp<p.; above this value the system falls into an
regions wherep=0 [25,27,28. A field theory[i.e., a sto- absorbing configuration that typically contains a substantial
chastic partial differential equation fpi(x,t)], incorporating  density,¢, of particles.(Any arrangement of particles devoid
this memory term reproduces the nonuniversal exponents olef nearest-neighbor pairs is absorbing.
served in simulation§31]. In our simulations, we maintain a list of tié, current
In two dimensions the situation is much less clear. Simunearest-neighbor pairs. At each step we choose a pair at ran-
lation results for a microscopic model with INAR6] con-  dom from the list, and a procegannihilation with probabil-
flict with studies of models exhibiting the aforementionedity p, creation with probability *p). In case of annihila-
long memory[27,2§. (In particular, it seems possible that tion, the two particles are simply removed. For creation, we
choose a sitex at random from among the six neighbors of
the pair, and place a new particle thereifs currently va-
*Electronic address: jaff@fisica.ufmg.br cant. (If x is occupied the configuration remains the same.
'On leave of absence from Department of Physics and AsThe time increment associated with this stephis= 1N,
tronomy, Herbert H. Lehman College, City University of New corresponding to one transition per pair per unit time, in
York, Bronx, NY 10468-1589. Electronic  address: agreement with the transition rates that define the process.
dickman@fisica.ufmg.br Following each change we update the list of pairs. We use a
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InL. FIG. 2. Decay of the order parameters= 0.2005. +, L=160;

FIG. 1. Stationary pair density vs system size for0.21, @ L=320; line,L=640.

0.202, 0.201, 0.2005, 0.200, and 0.188t to right. , N
p=0.200 50 appears to be slightly supercritical, and that for
square lattice of. X L sites, with periodic boundaries; in the 0-20052 a bit subcritical, leading to the estimapg
studies reported here, all sites are initially occupied. =0.200511). Thecorresponding estimate fa¥ (taking into
account the uncertainty ip.) is 0.4466), consistent with

recent estimates af for DP in 2+1 dimensions, which range
from 0.450%10) [34] to 0.4521) [35].

To locate the critical pointp, we study the size- To estimate the exponent rati® v, we perform a least-
dependence of the@uas) stationary pair density, i.e., the  squares linear fit to the data shown in Fig. 1; The data for
fraction of nearest neighbors harboring a pair of particles, irp=0.2005 yield the exponent ratj@/v, =0.7935), where
surviving trials, following a transient period during which the uncertainty represents one standard deviation. The
p(t) relaxes from its initial value of unityp is the order quoted uncertainty, however, does not include the conse-
parameter for the PCP, and as such we expect that at tiggiences of our uncertainty o itself. In order to see how
critical point, this would affect our estimate, we ran further studies of the

stationary state fop=0.200 45, 0.20052, and 0.200 55, and
p(pe,L)~L A, (1)  found that the apparent value ¢@f/v, follows a roughly
linear trend for this range of values. Our final result, includ-

hile off-critical val hould viel iati f th ing.both intrinsic.uncertaintiee‘oragivgnp) and our error
while off-critical values ofp should yield deviations from the estimate forp,, is B/v, =0.792(14), in good agreement

ower law. We studied the pair density in systems of size™ ) ; ;
Ezlo, 20, 40, 80, and 160,pfor times, )r/angin}:g from 16 with the value of 0.79@) for DP in 2+ 1 dimensiong35].

for L=10 to 5x 10* for L =160, with sample sizes ranging . Wwe also dete.r_mined the survival probabililﬁ,(t,p,L),
from 1 trials (L=10) to 10 trials (L=160). The results .e., the pr'obablllty .that th'e'syst.em contains at Ieast one
(see Fig. 1 show p(p,L) following a power law forp nearest-neighbor pair. For finite this decays asymptotically

—0.2005. but clearly not fop=0.200 or 0.201. These data 25P~€ "™ with the lifetime showing a power-law depen-
permit us to conclude thai,=0.20042), thefigure in pa- dence on the system size at the critical point
rentheses denoting the uncertainty.

In order to sharpen our estimate fpg, we studied the
initial decay of the pair density. We expect the order param-
eter to decay as a power law~t~° in a critical system at

lll. CRITICAL PROPERTIES

7p(Pe, L)~ LI @

short times(i.e., t<r~L"I’"t, for which the correlation 042
length £&<L). For off-critical values, we anticipate devia-

tions from a power law wheg(t) saturates at its stationary 043 r
value (<L), asp(t) approaches a nonzero quasistationary

density(in the active phas@<p.), or decays exponentially, 044 r
for p>p.. In Fig. 2 we showp(t) for p=0.2005, for three T
different system sized, =160, 320, and 640, and observe -045 ¢
the expected data collapse at short times. Next we studied

values very close to 0.2005 in a system witk- 640, and 046
evaluated the local slopes of graphs of the sort shown in Fig.

2.[The local slope is obtained from a least-squares linear fit -0.47

000 005 010 015 020 025

to Inp versus In, using sequences of 25 equally spaced points o

(AInt=0.1) to give §(t,), t, being the geometric mean of
the times represented by the data poinée plot the local FIG. 3. Local slope associated with the decay of the order pa-
slopes versus™ Y2 in Fig. 3, and observe that, is clearly  rameter, L=640. From top to bottom:p=0.2004, 0.200 45,
greater than 0.200 48, and less than 0.20055. The curve f@r200 48, 0.2005, 0.200 52, 0.200 55, and 0.2006.
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TABLE I. Ratios of order-parameter moments in the critical
PCP. Entries fol. =<0 represent linear extrapolations; data for the
CP from Ref[29]. Numbers in parentheses denote uncertainties in
the last figure.

P L m, /m? mg/m3 mg/(Mym,) m, /m3
20  1.3623)  2.3006) 1.6385) 2.24710)
. 40 13433  2.1477) 1.5995) 2.1599)
80  1.3343)  2.1119) 1.5826) 2.11610)
160  1.3274)  2.0869) 1.5718) 2.09313)
2 - - o 13233  2.0679) 1.561) 2.071)
4 5 CP  1.3261)  2.0801) 1.5691) 2.0938)

InL

FIG. 4. Relaxation times vs system size at the critical point.
Upper seti7p, the mean lifetime; lower set:, associated with the
relaxation ofp and ¢.

state yields an estimate fa¥(p.,L).

Since the dynamics o is tied to that of the order pa-
o ) rameter, p, and since the excess particle density(|0)
The data forp=0.2005 are shown in Fig. 4. Fol.lowmg the — ¢nan) in a related one-dimensional model is known to be
same procedure as used above fv, , we obtainy /v, governed by the order-parameter exponefi23], we expect
=1783). This is again consistent with the DP value, ¢ the leading finite-size correction to the particle density to
1.7662). We find thatp and the particle density also ap-  po | /v, just as forp. This is confirmed in Fig. 5. Linear
proach their stationary values exponentially(t)—ps fits to the d'ata folL=40 yield ¢=0.1480+aL~#"": andp
~e Y7 (similarly for ¢), but on a much shorter time scale ~bL A", (with a=0.9662 anob=i.426), suggesting that
than that ofP(t): 7= 7p/10. Analysis of the data for yields 0 hoar ' combinations— (a/b)p will be essentially inde-
v|/v, =1.645). (We note that our data for are of much oo qon o This is indeed so fot. =20, as shown in the
poorer quality than for,, and so should not be interpreted inset of Fig. 5, from which we obtain our final estimate
as indicating non-DP scaling. _0_14711)'_ ' ’

For p=p, the process always falls mto_the absorbing Order parameter moment ratios provide another tool for
state. The properties of this state are detgrmmed by the prc)l?;(ssigning a model a universality class; in equilibrium spin
ability Q|str|but|pn (mgiuced by the dynam@spn the set of systems Binder’s reduced fourth cumulant has been widely
absprblng co_nflgu_ratlons for sys_tem sIzeOf mtere_st is the used for this purpos86]. A variety of ratios, involving both
Eartlcle fiensny(ﬁ n t_he absorbmg .s_tate, n partlcularz _the odd and even moments, have been determined for several

ngtqral density, defined as the limiting value at the critical one dimensional models with absorbing-state transitions
point: cluding the PCPR as well as for the two-dimensional contact
procesq29]. We determined the stationary order-parameter
momentsmy, ...,m, (m;=(p’)) in order to evaluate vari-
ous ratios; the results are listed in Table I. In Fig. 6 we plot
several of the moment ratios versus?!; linear fits yield the
infinite-L estimates given in Table I. The latter agree quite
(In one dimension, it is only for this particle density that the well with the results for the contact process, providing fur-
spreading exponents take DP val(i23].) In our simulations  ther support for the PCP belonging to the DP universality
at p, virtually all of the trials end in an absorbing configu- class. Curiously, the moment ratios for the PCP appear to
ration beforet,,; the final particle density in the absorbing approach their limiting values monotonicallyith L), while
the two-dimensional CP exhibits a nonmonotohiclepen-
dence(see Fig. 5 of Ref[29]).

$nar= lim ¢(pe,L). )
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FIG. 5. Particle density in absorbing configurations at the criti-
cal point vsL "#".. The inset is a plot ofp—0.6776.

FIG. 6. Order-parameter moment ratios in the critical PCP. Up-
per set,m4/m§; middle set,m;/(m;m,); lower set,mzlmi.
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IV. SUMMARY

We studied the stationary critical properties of the pair
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metry. Our best estimate for the critical parameterpis
=0.200511). Theissue of spreading dynamics will be ad-
dressed in future work.

contact process in two dimensions. On the basis of the expo-

nent ratiosg/v, andv /v, , moment ratios, and the initial
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